6 found
Order:
  1. Phase Space Portraits of an Unresolved Gravitational Maxwell Demon.D. P. Sheehan, J. Glick, T. Duncan, J. A. Langton, M. J. Gagliardi & R. Tobe - 2002 - Foundations of Physics 32 (3):441-462.
    In 1885, during initial discussions of J. C. Maxwell's celebrated thermodynamic demon, Whiting (1) observed that the demon-like velocity selection of molecules can occur in a gravitationally bound gas. Recently, a gravitational Maxwell demon has been proposed which makes use of this observation [D. P. Sheehan, J. Glick, and J. D. Means, Found. Phys. 30, 1227 (2000)]. Here we report on numerical simulations that detail its microscopic phase space structure. Results verify the previously hypothesized mechanism of its paradoxical behavior. This (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  2. A Solid-State Maxwell Demon.D. P. Sheehan, A. R. Putnam & J. H. Wright - 2002 - Foundations of Physics 32 (10):1557-1595.
    A laboratory-testable, solid-state Maxwell demon is proposed that utilizes the electric field energy of an open-gap p-n junction. Numerical results from a commercial semiconductor device simulator (Silvaco International–Atlas) verify primary results from a 1-D analytic model. Present day fabrication techniques appear adequate for laboratory tests of principle.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  3. Experimental Test of a Thermodynamic Paradox.D. P. Sheehan, D. J. Mallin, J. T. Garamella & W. F. Sheehan - 2014 - Foundations of Physics 44 (3):235-247.
    In 2000, a simple, foundational thermodynamic paradox was proposed: a sealed blackbody cavity contains a diatomic gas and a radiometer whose apposing vane surfaces dissociate and recombine the gas to different degrees (A $_{2} \rightleftharpoons $ 2A). As a result of differing desorption rates for A and A $_{2}$ , there arise between the vane faces permanent pressure and temperature differences, either of which can be harnessed to perform work, in apparent conflict with the second law of thermodynamics. Here we (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  4.  51
    Thermosynthetic Life.D. P. Sheehan - 2007 - Foundations of Physics 37 (12):1774-1797.
    Two categories of life are currently recognized—chemosynthetic and photosynthetic—indicating their principal free energy resource as either chemicals or electromagnetic radiation. Building on recent developments in thermodynamics, we posit a third category of life—thermosynthetic life (TL)—which relies on environmental heat rather than traditional free energy sources. Since thermal energy is more abundant than chemicals or light in many settings, thermosynthesis offers compelling evolutionary possibilities for new life forms. Based on variants of standard cellular machinery, a physical model is proposed for the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5. The Second Law of Thermodynamics: Foundations and Status. [REVIEW]D. P. Sheehan - 2007 - Foundations of Physics 37 (12):1653-1658.
    Over the last 10–15 years the second law of thermodynamics has undergone unprecedented scrutiny, particularly with respect to its universal status. This brief article introduces the proceedings of a recent symposium devoted to this topic, The second law of thermodynamics: Foundations and Status, held at University of San Diego as part of the 87th Annual Meeting of the Pacific Division of the AAAS (June 19–22, 2006). The papers are introduced under three themes: ideal gases, quantum perspectives, and interpretation. Roughly half (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  6. Steady-State Work by an Asymmetrically Inelastic Gravitator in a Gas: A Second Law Paradox. [REVIEW]D. P. Sheehan, J. Glick & J. D. Means - 2000 - Foundations of Physics 30 (8):1227-1256.
    A new member of a growing class of unresolved second law paradoxes is examined.(1–7) In a sealed blackbody cavity, a spherical gravitator is suspended in a low density gas. Infalling gas suprathermally strikes the gravitator which is spherically asymmetric between its hemispheres with respect to surface trapping probability for the gas. In principle, this system can be made to perform steady-state work solely at the expense of heat from the heat bath, this in apparent violation of the second law of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations